Literature Survey on Relation Extraction and Relational Learning

نویسندگان

  • Kush Goyal
  • Pushpak Bhattacharyya
چکیده

Semantic relation extraction between entities plays key role in many applications in natural language processing and understanding, information retrieval, text summarizing, etc. These application require an understanding of the semantic relations between entities. We present a comprehensive review of various aspects of the entity relation extraction task. We also present a review of relation extraction techniques in medical domain. Relation extraction techniques are used in relation extraction from unstructured text which can be used for further processing. These extracted relations are useful to construct a knowledge base. There are various relational learning methods which are used to learn new relations with the help of existing relations. Here we present a review of recent research on relational learning techniques as link prediction techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propositionalization of Relational Learning: An Information Extraction Case Study

This paper develops a new propositionalization approach for relational learning which allows for efficient representation and learning of relational information using propositional means. We develop a relational representation language, along with a relation generation function that produces features in this language in a data driven way; together, these allow efficient representation of the re...

متن کامل

Learning Relational Dependency Networks for Relation Extraction

We consider the task of KBP slot filling – extracting relation information from newswire documents for knowledge base construction. We present our pipeline, which employs Relational Dependency Networks (RDNs) to learn linguistic patterns for relation extraction. Additionally, we demonstrate how several components such as weak supervision, word2vec features, joint learning and the use of human a...

متن کامل

Learning Relational Structure for Temporal Relation Extraction

Recently there has been a lot of interest in using Statistical Relational Learning (SRL) models for Information Extraction (IE). One of the important IE tasks is extraction of temporal relations between events and time expressions (timex). SRL methods that use hand-written rules have been proposed for various IE tasks. In contrast, we propose an approach that employs structure learning in SRL t...

متن کامل

Semi-Supervised Convolution Graph Kernels for Relation Extraction

Extracting semantic relations between entities is an important step towards automatic text understanding. In this paper, we propose a novel Semi-supervised Convolution Graph Kernel (SCGK) method for semantic Relation Extraction (RE) from natural English text. By encoding sentences as dependency graphs of words, SCGK computes kernels (similarities) between sentences using a convolution strategy,...

متن کامل

Learning and Inference for Information Extraction

Information extraction is a process that extracts limited semantic concepts from text documents and presents them in an organized way. Unlike several other natural language tasks, information extraction has a direct impact on end-user applications. Despite its importance, information extraction is still a difficult task due to the inherent complexity and ambiguity of human languages. Moreover, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017